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SECOND ORDER IT0 PROCESSES 
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1. Introduction. A first order stochastic differential equation is any 
equation which can be expressed symbolically in the form 

d y ( t )  = m[t,  y ( t ) ld t  + d t ,  y ( t ) l d z ( t ) ;  (1. 1) 

m and (T are called the drift and diffusion coefficients and z( e )  is usually a 
Brownian motion process. If m[t, X I  5 m,x and art, XI 3 a,, where m, and 
(T,, are constants, then this equation is called the Langevin equation, and its 
importance has been recognized for some time in many problems of physics 
and engineering. The rigorous interpretation and the development of the 
corresponding theory of the y-process, with the Ita-Doob approach to 
stochastic integrals, comprises part of diffusion theory (i.e. the theory of 
Markov processes with continuous sample paths) and is treated in detail in 
the recent books of Dynkin [SI and Skorokhod [18]. 

The following related problem has received little attention thus far. I t  
concerns the simple harmonic oscillator driven by a Brownian disturbance 
(i.e. “white noise”), given by the symbolic stochastic equation 

dy’( t )  4- 2ay f ( t )d t  + PZy(t)dt = dz( t ) ,  

where y’ denotes the sample derivative of the y-process describing the posi- 
tion of the particle, the z-process again being Brownian motion. This type 
of equation leads naturally to non-linear extensions of the form 

dY’(t) = mrt, v( t ) ,  Y’(t) l  d t  + art, y ( t ) ,  y‘(t) ldx(t) .  (1. 2) 

In  this paper we shall study the stochastic processes satisfying equation 
The solution process, i.e. the y-process, will be called a second order (1. 2). 

It8 process following the terminology introduced by Borchers [2]. 
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28 JEROME A. GOLDSTEIN 

The necessary preliminaries are presented in the next two sections. 
Then the oscillation of the sample paths of the 9‘-process is studied with 
the aid of some general results on stochastic integrals, which are then ap- 
plied to the study of symmetrized stochastic integrals. Next, a local and a 
global comparison theorem for the sample functions of second order It6 
processes are obtained; these results justify the use of the term “drift coef- 
ficient” for m. The sample paths of the y’-process are shown to be 
directly related to the sample paths of a Brownian motion process in case 
G is non-random. Finally, the asymptotic sample function behavior of se- 
cond order It6 processes is studied in the stationary case with the aid of 
martingale theory. 

2. Stochastic differential equations. Let (Q, N, P )  denote a fixed 
probability space on which all random variables are defined. E { % }  denotes 
the expectation of a random variable x. R+ = [O, m) and R” is n-dimensional 
Euclidean space. The “oYy variable will usually be suppressed when writing 
random variables so that, for example, the stochastic process { x ( t ,  e ) ,  t €R+}  
will be written as { x ( t ) ,  t E R+}. Two random variables x and y are identi- 
fied if P { o :  x(o) = y(w)} = 1. All stochastic processes considered below can 
and will be assumed separable (cf. Doob [4, p. 571). 

A stochastic differential equation is an equation of the form 

d Y ( t )  = M [ t ,  Y ( t ) ld t  + S[ t ,  Y ( t ) l d Z ( t ) ,  

the rigorous interpretation of which is obtained, via stochastic integrals, by 
writing it in the integrated form 

Here {Z(t) ,  t E R+} is a normalized m-dimensional Brownian motion (or 

, and { z , ( t ) ,  t E R+}, - - a ,  {z,(t), t E R+} are Wiener process) : Z ( t )  = 

m independent one-dimensional Brownian motion processes, each with unit 
variance parameter. M (  ., a )  maps R+ x R” into R”, and S( a ,  .) maps 
R+ x R” into the set of all real n x rn matrices. If the i-th component of 

M ( t ,  x) is m,(t,x), if the i-th component of Y(t)  is y3 ( t ) ,  and if the ij-th 
component of S( t , x )  is ~ ( t , x ) ,  then the vector equation (2. 1) can be writ- 
ten in the form 

t2 
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(2. 2); 

i = 1, - -, n. 
integrals. ’ Equation (2. 1) or (2. 2) is to be solved for t 2 to. 

assumptions are made : 

(AI) 
(A2) For each x E R”, each t E R+, and each i, j, 

The last term in this equation is a sum of (It6) stochastic 
The following 

Each mi( - , - ) and each a i j ( .  , - ) are Baire functions. 

(A3) For each x E R” and each t E R+, S ( t ,  x) is a non-negative definite 
matrix. 

For each T > 0 there is a constant K ( T )  such that if t E [O, TI and 
x,y E R” then 

(Ad) 

I % ( t , X )  -%(t,Y)l, l U i j ( t , X )  -.ij(t,Y)I r K ( T ) I x  - Y I  

n 
for i = 1 ,  . . a ,  n, j = 1 ,  
dean norm of x E R”. 

, m, where 1x1 = (z xk2)1/2 is the Eucli- 
k = l  

(AS) For i = 1, . ., n, the random variable y,(to) is square integrable 
and is independent of the increments {Z(Y) - Z(u), t0<u<v < m}. 

Then there exists an essentially unique (vector) stochastic process. 
{Y(t), t 2 t o }  such that equation (2. 1) (or equivalently (2. 2)) holds with 
probability 1 for each t 2 to. The “essential uniqueness” means that if 
{ X ( t ) ,  t > t o }  is another solution process, then p{o: Y(t,o) = X ( t , o ) }  = 1 for 
each t >to. Y(t)  is measurable relative to X ( t o ,  t) ,  the a-field generated 
by the increments {Z(u) - Z(u),  to  5 u < Y I t }  and Y(to). Moreover, 
{Y(t), t > t o }  is a (vector) Markov process. The transition function of the 
Y-process is stationary if M ( t ,  x) = M ( x )  and S ( t ,  x) E S ( x )  are independent 
of t .  With probability 1, the sample functions k-( -,a) are continuous. 
functions from R+ to R”. 
The original study is due to It6 [14]. 

For proofs see Dynkin [5] or Skorokhod [18]. 

3. 
chers [Z]. 
which satisfies the stochastic differential equation 

Second order It6 processes. These processes were introduced by Bor- 
A second order It6 process is a stochastic process {y(t), t E R+k 
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dY‘(t) = m[t, Y ( t ) ,  y’(t)ldt + dt, Zl(t), y’(t)ldz(t). 

Here { z ( t ) ,  t E R+} is a Brownian motion process with unit variance para- 
meter. The exact meaning of the above equation is 

?dt) = Y(0) + s;?/‘(s)ds 

Y’(t) = Y‘(0) + &[s, ?-/(SI, y’(s)lds + s:o[s, Y(S), v‘(s)ldz(s), 
(3. 1) 

the last integral being a stochastic integral. Equations (3. 1) are to hold 
with probability 1 so that { y ’ ( t ) ,  t E R+} is the sample derivative process 
of { ~ ( t ) ,  t E R+}. 

(Bl) m( , . ), O( - , ) :  R+ x R2 + R1 are Baire functions. 

(B2) For each T > 0 there is a constant K(T)  such that if t E [O,T] and 
if x, y E R2 then 

The following conditions are assumed to hold: 

0 I I m(t ,  X) I ,  a(t, X) 5 K ( T )  (1 + I x I ‘)l”, 

I m(t9 X) - m(t, Y) I ,  l d t ,  X) - d t ,  Y) I I K(T)  I x - Y I .  

(B3) 
dent of all the increments of the z-process. 

form (2. I), where 

y(O), ~ ‘ ( 0 )  are square integrable random variables which are indepen- 

Equations (3. 1) can be written as a vector stochastic equation of the 

here {z , ( t ) ,  t E R+} is a (dummy) Brownian motion with unit variance 
parameter independent of the z-process and of Y(0). For notational simp- 
licity we have taken as the initial time to  = 0. The conditions (Bl)-(B3) 
imply the conditions (Al) - (AS), so there is an essentially unique solution 
process [ Y ( t )  = ($ti)), t E R+] which is a (vector) Markov process, and, 
with probability 1, y( - ,o) and y’(. ,o) are continuous on R+. Moreover, 
y’( t )  is the “mean square” (or strong L 2 ( Q , F ,  P) )  derivative of ~ ( t ) ,  i.e. 

lim E{lh-l(y( t  + h) - y ( t ) )  - y’(t)I2} = 0, t E R+; 
h+o 

in addition, { y ’ ( t ) ,  t E R+} is separable and measurable, and { y ‘ ( t ) ,  0 5 t g . T )  
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is uniformly integrable for each T >O.  This was proved by Borchers 
[2, Theorem 2. I]. The y’-process, which is the derived process of { y ( t ) ,  
t E R+} in both the strong (mean-square) and pointwise senses, can thus be 
called the stochastic derivative of the y-process (following Borchers [2]). 

4. The main results of this section 
are valid for general diffusion processes which are solutions of equation 
(2. 1) (with t o  = 0 for convenience). Thus these results also apply to second 
order It6 processes (see Corollary 4. 4 for example). Applications will then 
be made to symmetrized stochastic integrals. 

Recall that for t E R+, x ( 0 ,  t )  is the 0-field generated by the random 
vectors { Z ( v )  - Z(u), 0 < u < v 5 t }  and Y(o). We shall consider stochastic 
processes {c ( t ) ,  t E R+} for which the following three conditions are satisfied: 

(Cl) c( .  , - )  is a measurable function on R+ x B (thus {c ( t ) ,  t E R+} is a 
measurable stochastic process). 

c ( t )  is x ( 0 ,  t )  measurable for each t E R+. 

Variation of the sample paths. 

(CZ) 

(C3) PI@: S f c z ( t ,  o)dt  .< a] = 1 for each T >O.  

processes for which (Cl)-(C3) hold. 
Let {a,(t), t E R+}, {pij(t) ,  t E R+}, l g i s n ,  1 s  j r m ,  be stochastic 

Let O r a <  b < 00. Set 

Suppose that 

is a partition of [a, b] with norm In1 = max ( tpC1 - tp ) .  
O l p l k - 1  

THEOREM 4. 1. Let the ai- and F,j-processes sati$y (cl)-(c3) and let the 
. , n, the limit in probability o f  x,-processes be deJined as above. For i ,  j = 1, - 

k-1 

p = o  
X ( z i ( t p + J  - xi( tp))  ( z j ( t p + J  - 

as In] tends to zero exists and equals 

In  particular, the limit in probability o f  
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as k+ 00 exists and equals 

Proof. Observe that the second statement in the theorem is a special 

where &(I-) = max {ti: t j <  I-}. Summing from p = 0 to p = k - 1 we get 
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To complete the proof it must be shown that S b W ( n r ~ ;  o)dz,(r)+O in 
probability as [ E [  +O. By the sample continuity of the Xi-process, 
W(n, r ;  r)+o with probability 1 as 1.1 +O. To obtain the desired 
result we appeal to the Dominated Convergence Theorem for stochastic 
integrals [IS, p. 191. For this, it suffices to exhibit a stochastic process 
{ M ( t ) ,  t E R+} satisfjring (cl)-(c3) such that 

a 

with probability 1. 
Let 

M J t )  = max{x,(u): O L u l t } .  

Since almost all sample functions xi(. , o) are continuous on R+, Ml( - , u) is 
continuous and monotone non-decreasing on R+ with probability 1. Also 
Ml(t)  is a random variable for each t E R+ since the x,-process is separable. 
Therefore, by a theorem of Doob [4, p. 601, Ml( .  , .) is a measurable func- 
tion on R+ x 8. Furthermore, M ( t )  is a function of {x,(u), 0 4 u l  t }  and 
so is x ( 0 ,  t)-measurable. Let 

M ( t )  = Ml(t)Pir(f). 

{ M ( t ) ,  t E R+} satisfies (Cl) and (CZ) since the MI- and &,-processes do. 
Moreover, it satisfies (C3) because if T > 0, 

with probability 1 by (C3) for the P,,-process. 
definition of M ( t ,  o) that if t E [a, b], 

Finally, it is clear from the 

with probability 1. This completes the proof. 
r 

COROLLARY 4. 2. Let the IyBotheses of Theorem 4. 1 hold. 
an increasing sequence In,, n,, - . - } of positive integers such that 

Then there exists 
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2%-1 

lim z1 I %,(a + 2-”k(b - a) ( p  + 1)) - x,(a + 2-”*(b - a)p)  1 2  
k+m p = O  

= 5 S b  f l i j2 (S)dS  
j=1 a 

with probability 1. 
This follows immediately from the second part of Theorem 4. 1 since 

any sequence converging in probability has an almost everywhere conver- 
gent subsequence. 

Now let { Y ( t ) ,  t E R+} be the solution process of the stochastic differ- 
ential equation (2. 1) or (2. 2). Set 

ai(s, 0) = m,Cs, Y(s, @)I, ,&j(s, 0) = Gij[s, Y(s, @)I- 
Then {a,(t), t E R+}, {(3ij(t), t E R+} satisfy (cl)-(C3) so that by Corollary 
4. 2, 

with probability 1. 

THEOREM 4. 3. If f o r  each ( t ,  x )  E R+ x R”, S( t ,  x )  is di$erent from the zero 
matrix, then the (vector) process Y, which is the solution o f  (2. 1) under conditions 
(Al)-(A5), is o f  unbounded variation on euery interval [a, b] (a< b) in R+ with 
probability 1. lJ for each ( t , x ) E R +  x R”, the row vector (Gil(t,x), - - e ,  uim(t ,x))  
is da8erent from the zero vector, then the y,-process is o f  unbounded variation on every 
interval [a, b] (a< b) in R+ with probability 1. 

Proof. Recall that the Y-process is of unbounded variation on [a,b] 
with probability 1 if 

k-1 

II=O 
supn X I Y(tp+l,  01 - Y(tp,  01 I = 00 a.e. [PI 

where the supremum is taken over all partitions K of [a,b] as in (4. 1). 

Let O< a < b < ~3 be fixed but arbitrary. Let 

b m  

ai= 1 
P, (0) = s zG; j (u ,  Y ( U ,  o))du, i = 1, - * y n, 

I (@)  = {i: Pi(@) > 01. 
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Let In,, n,, . 
such that Y( .,a) is continuous on [a,b] and 

. } be as in Corollary 4. 2 and let Qo be the set of all o E Q 

where i k  = Z R k  - 1 and 

dY(i, p ,  k )  = Y i ( U  + 2 - Y b  - a) ( p  + 1)) - yi(a + 2 - y b  - a)p) .  

Then P(SZo) = 1. 
exists a 6 = 8(7, o, i) > 0 such that 

Let 7 > O  be given. Then if o E Q, and i E I (@)  there 

1 Yi(tY 0) - Yi(% 0) I < 7 P , ( d  (4. 2) 

if s, t E [a, bl, I t - SI < 6 ,  because yi( - , o) is uniformly continuous on [a, b]. 
Consequently there is an integer KO such that for ~ z K , ,  ~ - ~ k  < 6 and 

so, for p = 1, - - 0 ,  z"", 

I dY ( i Y  P, k )  1 7Pib )  I dY (i, p ,  k )  I (4. 3) 

by (4. 2). Also there is a Kl such that for ~ z K , ,  

Let K = K(p, o, i) be the larger of KO, Kl. Then for each k Z  K, 

Since 7 > 0 is arbitrary the following conclusions are valid: first, if I ( o )  is 
non-empty for each o in a subset of SZo of probability 1, then 

with probability 1; second, if i E I ( @ )  for each o in a subset of sZo of pro- 
bability 1, then 

with probability 1. Theorem 4. 3 is thus proved. 
An immediate consequence of this theorem is 
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COROLLARY 4. 4. Consider the second order It8 process described 6Jy  equations 
(3. 1). Then the sample functions y'( - ,a) of 
the derived process are of unbounded variation in every interval [a, bl with 0 <a< b 
< 03 with probability 1. 

The results stated in Theorems 4. 1 and 4. 3 contain the results of 
Wong and Zakai [Zl]. The idea of the 
proof of Theorem 4. 1 is due to Wang [ZO]. 

Sufipose o(t ,Eya)  + 0 for  each t , f ,s .  

See also Berman [I], Fisk [9]. 

THEOREM 4. 5. Let the hypotheses of Theorem 4. 1 hold. Let g be a real- 
ualued function, continuous on R1, such that Q(O) = 0 and g"(0) exists. Then the 
limit in probability o f  

as I H I  --+ 0 exists and equals 

If we set i = i in Theorem 4. 1, then the resulting statement is the 
special case of the above theorem obtained by setting g(x) = x2 .  On the 
other hand, Theorem 4. 5 is actually a consequence of Theorem 4. 1. The 
proof can be constructed along the lines of the proof of the corresponding 
result in Wang [20]. The details are omitted. 

One of the drawbacks of the It6 stochastic integral is that it does not have 
the same formal properties as ordinary integrals. For example, in the formula 
for integration by parts, extra terms appear (see [4, p. 4431, [14y p. 411). 
For a particular example, we note that if { z ( t ) ,  t E R+} is a normalized 
Brownian motion process with z(0) = 0, then 

2Stz(s)dz(s) = x ( t ) 2  - 2t. 

Stratonovich [19], Fisk [SI, and Gray and Caughey [I21 have (apparently 
independently) introduced a "symmetrized" stochastic integral which has 
the formal properties of ordinary integrals. Theorem 4. 1 has an intimate 
connection with the theory of symmetrized stochastic integrals. Before point- 
ing out this connection we shall recall briefly the definition and some pro- 
perties of symmetrized integrals. Out discussion follows Fisk [SI. 
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Let {S, t E R+} be an increasing family of sub o-fields of fl and let 
{ M ( t ) ,  t E R+}, { N ( t ) ,  t E R+} be stochastic processes such that M ( t )  and 
N ( t )  are S-measurable for each t E R+. For definiteness we shall suppose 
that { M ( t ) ,  S, t E R+} and { N ( t ) ,  S, t E R+} are sample continuous 
martingales. (More generally, the M- and N-processes can be quasi-martin- 
gales [71, [81. For a different generalization, see Meyer [16, pp. 72-1621.) 
If x is a partition of [a, 61 c R+ as in (4. I), then the stochastic integral 

will be called an Itd-Doob integral and it exists as a limit in probability. 
The stochastic integral 

will be called a symmetrized integral and it exists as a limit in probability. 
The integration by parts formula for symmetrized integrals is valid : 

If f and its first two derivatives are bounded continuous functions on R’, 
then 

These formulas are not valid for Itb-Doob integrals. If the M-process is a 
Brownian motion process, then ( I )  N(s )dM(s) ,  s, t E R+) is a martin- 

gale, whereas [ (S)[ ’N(s)dM(s) ,  S, t E R+) is not a martingale in general. 
I t  seems that for some purposes it is preferable to use ItG-Doob integrals, 

whereas symmetrized integrals are better suited for other purposes. For a 
discussion of the physical interpretation of the difference between Ita-Doob 
and symmetrized stochastic integrals, see [lz]. 

The connection between the two types of stochastic integrals is given by 
the formula 

I s: 

where 
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Theorem 4. 1 enables us to evaluate this expression explicitly if { N ( t ) ,  t € R + }  
and { M ( t ) ,  t E R+} are components of solution processes of stochastic differ- 
ential equations of the type (1. 1). In  particular, Theorem 4. 1 enables us 
to evaluate (S )Sbx i ( t )dz ( t )  (where the xi- and z-processes are as in Theorem 

4. 1) by evaluating ( I )Sbx i ( t )dz ( t ) .  a 

a 

5. Comparison of second order It8 process trajectories. 
For i = 1, 2 let {y , ( t ) y  t E R+} be a second order It6 process with drift 

and diffusion coefficients mi and uy and with the same Brownian distur- 
bance z. In  other words, for i = 1, 2, 

and (Bl)-(B3) hold. We shall prove a theorem (Theorem 5. 1) which states, 
roughly, that if the initial conditions are the same, i.e. y,(~)=y,(O), y:(O)=y;(O), 

and if mi< m,, then yl( t )< y,(t) and y:( t )  < y ; ( t )  for O <  t < h with proba- 
bility 1, where h is a positive random variable; if in addition o(t,t,T)=u(t,T) 
is independent of 6, then y l ( t ) <  y z ( t )  and y : ( t ) < y ; ( t )  for O <  t < 05 with 
probability 1. Since yi( a ,  a) may be interpreted as representing the position 
of a diffusing particle as a function of time, Theorem 5. 1 implies that 
increasing the drift coefficient (m) has the effect of giving the particle a 
“ p ~ ~ h ‘ ~  in the positive direction. So this theorem “justifies” the use of the 
term “drift coefficient” for m. 

Recall that T is called a stopping time for the z-process if T :  8 + [O, m] 

and for each s E R+ the event Io: ~ ( o )  > s} (=[r > s]) is independent of the 
increments { z ( t )  - x(I), t 2 I 2 s}. 

THEOREM 5. 1. Let {y , ( t ) ,  t E R+} be two second order It6 processes as above. 
Suppose that m,, m,, u are continuous and that for each positive number c there are 
constants a >1/2 and C > O  such that if t E R+, x l ,  x ,  E R,, and l x l l ,  I x , ~  5 cy 

then 
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Suppose also that m,(t ,  x) < m,(t, x) for all ( t ,  x) E R+ x R2. 

(a) 
for almost all (a. a.) o E [T < 031. 
h, such that 

Let B be a stopping time for the z-process such that Yl(r(w), o) = Y2(r(o), o) 
Then there exists a positive random variable 

& ( t ,  0)  > y : ( t ,  0) and y 2 ( t , o )  > y d t ,  0) 

for ~ ( o )  < t < ~ ( o )  + h,(o) for a. a. 

(b) 
=a(t,?) is independent of E. 
such that y ; ( t , o )  > y : ( t ,  o) for O< t < h(o);  moreover, 

o E [B < -1. 
Suppose that y,(O) 6 y,(o), y:(o) < y i (0 )  with probability 1 and that a ( t ,  E , T )  

o E L? there is a number h(o) > 0 Then for a. a. 

Y ; ( t , o ) Z Y : ( t , o )  and y z ( t , o )  >Y,( t ,@) 

for all t > 0 with probability 1. 
This theorem will folIow from the general result presented below and 

from the existence and uniqueness result quoted in section 3. Note that if 
T s o ,  then the condition Y l ( ~ )  = Y2(,-) in part (a) means that the two second 
order It6 processes have the same initial conditions. 

For i = 1, 2, let { Y ( t ) ,  t E I?+} be the solution process of the stochastic 
differential equation 

Y"(t) = Y ( 0 )  + StMi[s, P ( s ) l d s  + S6S[s, Y ( s ) ldZ( s ) .  

(&)-(As) are assumed to hold. Note that S and the Brownian motion Z 
are the same for the Y1- and Y2-processes. For the rest of this section the 
j-th [or jk-th] component of a vector [or matrix] quantity will be denoted 
by a subscript j [or jk]. 

THEOREM 5. 2. Let P, Y2 be as above. Sujpose that MI,  M 2 ,  S are 
Suppose that for each c > 0, T > 0,  there are ( jo in th )  continuous on R+ x R". 

constants a = a(c ,  T )  > 112, C = C(c, T )  > 0 such that 

I s j p ( t ,  X) - sjp( t ,  Y )  I CI x - Y I a (5. 2) 

whenever t E [(),TI, 1x1 < c, l y l  6 c, p = 1, - - - ,  m. Here j is a $xed integer 
between 1 and n. Suppose that M l ( t , x )  < M j 2 ( t , x )  f o r  all ( t , x )  E R+ x R". Let 
T be a stopping time for  the 2-process. 

(a) If Y1(B(o), o) = YZ(r(o), o) for a. a. o E [B < 031, then there is  a positive 
random uariable h, such that Yj'(t,o) < Yjz(t,o) for ~ ( o )  < t ( ~ ( 0 )  + h,(o) and 
a. a. o E [B < 031. 
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(b) Suppose that (5. 2) is replaced by the more restrictive inequality 

f o r  t ,  x, y, p ,  i as above in (5. 2). If Yi(r(o),o)=YjZ(r(o),o) for a. a. o~[r<-l, 

then there is a positive number h(w) such that Yjl( t ,o) < Yjz(t,o) f o r  do) < t 
< r(o) + h(o); moreover, y i ( t ,  o) s Yjz((t,o) f o r  o(o) < t < v3. These statements 
hold for a. a. 

For t E R+ and x = (&q) E R2 set j = 2, 

o E [r < -1. 
Let us first prove Theorem 5. 1 assuming the validity of Theorem 5. 2. 

where the zo-process is a (dummy) normalized Brownian motion process 
independent of the x-process and of Y1(o), Yz((o) as in section 3. If the 
hypotheses concering mi, (T in Theorem 5. 1 hold, then so do the corres- 
ponding hypotheses concerning Mi, s in Theorem 5. 2 hold. (If o(t,  5, 7) 
= u ( t , p )  is in Theorem 5. 1 (b), then (5. 1) implies (5. 3). ) 

Let the hypotheses of Theorem 5. 1 (a) hold. Then y i ( t , o ) > y : ( t , o )  
for a. a. o E [r < -1 and r(o) < t < h,(o) by Theorem 5. 2 (a). Integration 
yields y2(t,w) > yl( t ,o)  for r(o) < t < h,(o) and a. a. o E [r < -1, and so 
Theorem 5. 1 (a) follows. 

Now let the hypotheses of Theorem 5. 1 (b) hold. Let r(o)=inf { t 2 0 :  
y : ( t , o ) < y : ( t , o ) } .  Then r is a stopping time for the z-process (and hence 
for the 2-process), and by the continuity of the sample paths and the fact 
that yi(0) < y;(O), we have y$(~(o), o) = y: ( r (o) ,  o) for a. a. o E [r < -1. By 
Theorem 5. 2 (b), there is a positive constant h(o) such that yG(t,o) > y : ( t ,o )  

for r(o) < t <r(o) + h(o); also y ; ( t ,o )>y : ( t ,o )  for r ( o ) ~ t  < -. These 
statements are valid for a. a. o E [r < -1. Integrating with respect to t 
yields the conclusion of Theorem 5. 1 (b) for a. a. w E [r < -1. But for 
any o CE [ r<  -1 for which y:C-,o) is continuous, i = 1, 2, we have y $ ( t , o )  

> y : ( t ,  o) for all t E R+ by definition of r and also yz( t ,  w) > yl(t, o) for all 
t E R+ by integration. So Theorem 5. 1 (b) follows. 

The theorem is 
a multidimensional extension of Skorokhod’s result, which corresponds to 
the case n = m =  1 (see [IS, Chapter 51 and [171). The basic ideas of the 
proof are the same as in Skorokhod’s work, but there are several impor- 

The proof of Theorem 5. 2 is long and complicated. 
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tant differences. A detailed proof is given here for the sake of completeness 
and reference. 

Proof of theorem 5. 2. The proofs of parts (a) and (b) are the same 
We shall prove part (b) and 

The o-variable will 
except for slight changes, mainly notational. 
indicate the changes necessary for the proof of (a). 
not be displayed in what follows. 

Let T>O be fixed but arbitrary. For notational convenience set 

Ai(t) = W[t,  u i ( t ) l ,  Bi(t) = S[ t ,  Y i ( t ) l ,  i = 1,2. 

Let the hypotheses of Theorem 5. 2 (b) hold. For s E R+ set V(s) = 1 if 
and only if 

( i)  S ~ T ,  

(ii) inf{Aj2(U) - Ajl (u) :  T I U S S }  >2-1(Ar(~)-A+(-r))y and V(s)=O other- 
wise. {?F(s), s E R+} is a stochastic process. For k >  0, c > 0, s E R+ set 

VkYs) = I[O,Cl (sup ( 1 Y Y U )  I + I Y Y U )  I ) ) 4 0 ,  n(s)Itr, r+kl(s)V(s). 
UlS 

Here IG is the indicator function of the set G. 
the key result to be used in the proof. 

The following lemma is 

LEMMA 5. 3. Under the above hypotheses, ;f 

= ~Ws)[B, ,Z(s )  - B,'(s)ldz,(s)Y 

then 

m 
lim k-' Ij , (k)  = O 
k+O p = l  

with probability 1. 

Proof. Here l means r ,  but it can be taken to be l' since ?F/(s) 

contains the factor I[o,q(s). 

E {l13p,"(s)[Bjp2(s) - Bjp'(dldzp(s) 1') 
= E( [V:(s)lBjp2(s) - Bj,'(s) 12ds] by the stochastic integral isometry 

For p = 1, * - - ,  m we have 
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< C2E[([  F/(s)ds)'-"([!Fi(s) I Yj2(s) - Yj'(s) I2ds)") by Holder's inequality 

< CP(SE [ Fkc(s))ds)'-'(SE [ ?F/(s) I Yj2(s) - Yjl (~)j~)ds)~ by Holder's inequality 

< C2k1-a(SE {?Fi(s)IYjz(s) - Yj ' (s)  IZ}ds)' (5. 4) 

by the definition of Fi(s). In the above computation, the fact that 
( F ~ ( S ) ) ~  = Fi(s) was used several times. The first time Holder's inequality 
was used, it was used in the form I] fglll L llfllallglla with a = (1 - a)-l, b = a-l, 

f = V i ,  and g = F,"IYj2 - Yf I". The second time it was used in the form 
E [ f g ]  < E1/a[ fa]E1 /b  [gb] with a = (1 - a)-l, b = a-l, f = (SF/ ( t )  dt)'-", and 

g = (SFi(t)IYj2(t) - Y,'(t)12adt)a; and Fubini's Theorem was used several 
times. (In proving part (a), (5. 2) should be used instead of (5. 3); then 
the subscripts j should be erased from the right hand side of (5. 4). ) 

Observe that Fi(s) = 1 if and only if 

(i ')  supIIYi(t)l + IP ( t ) l :  ~ < t < s ) < c ,  

(ii') s E [o, TI n [T,  7 + kl, 
(iii') F(s) = 1. 

Let u E [o, s]. Then clearly (i') holds for u. 

if u z 7 ,  in which case (jii') also holds for u. 

(ii') holds for u if and only 
Therefore, if u<s,  

F/(s) = 1 implies V i ( % )  = sl(u). (5. 6) 

For a. a. w E [T < -3, Yjl(r) = Yj2(7), and so for a. a. such W, we have 

for S ~ T ( W ) .  (In proving part (a), this equation should be replaced by 

Y2(s) - Y1(s) = I'(A2(u) - A1(u))du + Ss(B2(u) - Bl(u))dZ(u). ) 
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Hence, using (5. 6), 

for a. a. 0 E [T < -1 for which s 2 ~ ( o ) .  

then both sides are zero, so (5. 7) holds with probability 1. 

constant H such that 

But if s < ~ ( o )  or if o E [T = m] 

Since a continuous function on a compact set is bounded, there is a 

ICO,CI (  I x I )  ( I MYs, x) I + I MYs,  x) I )Ira, TI(S) 2 H 

for all x E R", s E R+. 
m 

Let l j p ( k )  be as in the statement of the lemma and let L(k)  = Z ,?,,(k). 

Note that it is required to show that Iimk-'L(k) = 0 with probability 1. 
We have 

p=1 

k+O 

where 

by (5. 7 )  and the trivial inequality (a + b)2 < 2(a2 + b2). Hence 

E{ 1 L(k)  19 2 22"mC2k1-a( J1" + J z a ) .  

But 

?ri(u)IAj"u) - Ajyu)I r H Y : ( u )  

by the definition of the constant H. Therefore 

J1-1 -=c E { Y : ( S ) ( H ~ ) ~ } ~ ~  5 H2k3. 

Next, let 

(5. 9) 
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= 1: h , T I  (u,wi(u): ( B j p 2 ( U )  - B j , l ( u ) W p ( u ) .  

E{ I L(k)  I 2} < clkltZb + c,k""[SE{Vi(s) I L,(k) l 2 } d s 1  

[wi(s) IL,(k) 1 %  5 ksup{ IL,(k) 1 2 :  0 s s I T } .  

p = 1  

Then {L,(k), s E R+}, being a sum of m independent martingales, is a 
martingale (see [4, p. 4451, [lS, p. 211). Consequently 

(5. 10) 

where c1 = 22"rnC2Hz", c2 = 2'"mC2 (cf. (5. 8), (5. 9)). Note also that 

Recall that if {X(t), t E [O,T]} is a square integrable martingale, then 

E{supIX(~)1~: O S s l T }  54E{ IX(T)I2} (5. 11) 

Since {L,(k),  O s s s T }  is a square integrable (see [lS, p. 91, [4, p. 3171). 
martingale, it follows from (5. lo), (5. 11) that 

E{ I L(k)  1'1 S Cik1+'" + c&[E{ I LAk)  1211" 

Set v(k)  = E{ IL(k) 1 2 } .  
(5. 12) 

Then, by the stochastic integral where c3 = 2zacl. 
isometry and the independence of the 2,-processes, 

I t  follows from this and (5. 12) that 

v (k )  5 clk'+z" + Cak[Y(k)l". (5. 13) 

We claim that there are positive constants D, B such Let p ( k )  = k-l-"v(k). 
that 

p ( k )  < D if 0 < k<B. (5. 14) 

Then there is a sequence {ki} 
of positive numbers such that k,+o and p(k,)--+- as i +-. Let 
I/Z < p < a I 1 and let 

To prove this, suppose it is not true. 

Do = { ( t , X ) :  t E [O,T], x E R", 1x1 SC}. 

By hypothesis, ISjpl is bounded on Do, say by C1, and if (t ,  x ) ,  ( t , y )  E Do, 
p = I, - - -, m, we have, by (5. 3), 
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where C,  = max (C,ZC,). The point is that without loss of generality i t  
may and will be assumed that a<1. (In proving part (a), the subscript 
j should be erased in each xj, y j  in the above equations.) Dividing both 
sides of (5. 13) by [p(k)]“k’+’” and letting k = ki we obtain 

Cp(k,)l’-” 5 c1[p(ki)l-” + c3kia‘2u-1’. 

Since a < l  and p(ki)-+-, the left side of the above inequality tends to  - as i --+ -. But since cy > 1/2 and p(ki) +-, the right side tends to 
zero as i --+ -. This is the desired contradiction, and so the claim (5. 14) 
is proved. 

Let 

W J t )  = S:G,(sIdz,(s). 

Note that W,(t) = W,(T) for t TT. 
~ ( k )  = T + k. 

{W,(t), t E Rf} is a martingale. Set 
Since Then {W,(t-(k)), k E R+} is a martingale by [ IS ,  p. 91. 

m 
it follows that { A j p @ ) ,  ~ E R + }  is a martingale. Hence {L(k)  = 

being a sum of independent martingales, is itself a martingale. 
and (5. 14), if O < k o 1 8 ,  then 

Rj,(k), ~ E R + } ,  

By (5. 11) 
p= 1 

E{sup I L(k) I : 0 < k 5 ko} <4E{  I L(ko) I 2 }  14Dk,”e”. (5. 15) 

If 2-q-’ I k, then k-’ < Z q + I ,  and so 



46 JEROME A. GOLDSTFAN 

m 

But a >1/2, and so q22-q'2(L-1' converges; hence by the Borel-Cantelli 
Lemma [4, p. 1041, it follows that limk-'L(k) = 0 with probability 1. This 
completes the proof of Lemma 5. 3. 

q=1 

k+O 

Proof of Theorem 5. 2 (continued). Note that by the definition of ?Ft we 
have 

(5. 16) 

by (5. 16) and the definition of L(k). For a. a. a E [r < -1, A$(z) > Ajl(r) 
by hypothesis and k-'L(k)--+O as k-+O by Lemma 5. 3. For such o 
there is a positive number h(a) such that 

k-l I L(k) I < 4-l(Af(a)  - Ajl(r)) 

for 0 < k <  h(o) .  
0 < k < h(a) and ?F;(T + k )  = 1. 
numbers c, k, (depending on a) such that Y i ( r  + k)  = 1 for 0 < k <  k,. 
This completes the proof of the first assertion in part (b ) .  

Therefore the right side of (5. 17) is strictly positive for 
But for a. a. a E [a < -3 there are positive 

Let 

if It >a:  Y j2 ( t ) sY j1 ( t ) }  is non-empty; otherwise set h,(o) = -. Then 
h, = h, - r is an a. e. positive extended real-valued random variable and 
Yjl(t)  < Yj2(t) for a < t < h,  = h, + T for a. a. o E [Z < -1. (In fact, h, is 
the first exit time after z of a certain Markov process from a certain open 
set. See below.) Thus part (a) is proved. 
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We now complete the proof of part (b). Let rl(o) = - if Yl(t) S Yjz(t) 
for all t E [r, -1 or if ~ ( o )  = -; otherwise let rl(o) = inf{t: Yi(t) > Yf2(t)}. 
By the continuity of the paths, Yi(rl) = Yjz(rl) for a. a. o E [rl < -1. But 
-r1 is the first entrance time after r of the Markov process {(F(t) ,  Uz(t)) ,  
t E R+} into the open set {(x,y): x, y E R”, xj>yj}. Hence by [5, Chap- 
ter 41 rl is a stopping time for the (P,Y2)-process and hence for the 2-pro- 
cess. By the first part of part (b) of the theorem (with rl in place of r), 

for a. a. o E [rl < -1, we have Yl(t) < Yfz(t) for rl < t < h,, where h,(& > 0. 
Thus we have a contradiction unless P[r1 < -1 = 0. This completes the 
proof. 

6. Moments of second order It6 processes. For notational conveni- 
ence let 

mo(t) = m[t, y ( t ) ,  y’(t)l, uo(t) = d t ,  d t ) ,  y’(t)l 

for a second order It6 process. Then equations (3. 1) take the form 

Y ( t )  = Y(0) + j$s)ds 

y ‘ ( t )  7 Y’(0) + S)?z,(s)ds + S;U,(s)dz(s). 

(Bl)-(B3) are assumed to hold. In  this section the mean and variance of 
y(t), y ‘ ( t )  are computed since these statistics yield some information con- 
cerning the y-process and the derived process for large t. The elementary 
properties of stochastic integrals will be used without specific mention (see 
[4, Chapter 1x1). First, 

E[y’(t)l = ECy‘(O)l + S:E[mo(s)lds, (6. 1) 

Next, 

since 
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by Fubini’s Theorem, since the expectation of a stochastic integral is zero. 
(For a discussion of Fubini‘s Theorem when stochastic integrals are involv- 
ed, see Chapter 3, section 3 of [Z].  ) 

Let Var(X) denote the variance of a random variable X. Then 

VarCy’(t) - u’i0)l = EI[y’(t) - ~‘(0)1~1 - E2[v’(t) - Y‘(O)] 

For the y-process, 

One immediate conclusion from this is that 

(6. 4) 

This equality, which will be used in computing Var [ y ( t )  - y(O)], also follows 
easily from (6. 1) and (6. 2). 

Let 

and 
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Consequently, 

by the above calculation and (6. 4) 

Also, 

Var [y'(t)l = Var [ ~ ' ( t )  - y'(0)I + Var [y'(~)l ,  
Var [y(t)l = Var Cy(t) - ~ ( 0 ) 1 +  Var [~(0)1, 

(6. 6 )  

(6. 7 )  

since y ' ( t )  - y'(0) and y ( t )  - y(O), which are measurable relative to the o-field 
generated by { z ( u )  - x(u), 0 < u < u  I; t } ,  are independent of y(o), ~ ' ( 0 )  by 

In  particular, suppose that o is bounded away from zero, i.e. o(t ,  x) Z T  

Then by (6. 3)  and (6. 5 )  - (6. 7), 

P 3 ) .  

for all ( t ,  x) E R+ x R2 and some i'> 0. 

Therefore Var[y'(t)] and Var [y(t)] tend to infinity as t -+ 03. In  parti- 
cular, neither the y-process nor the y'-process can have a compact state 
space. 

Even if D is not bounded away from zero, there are still cases in which 

lim Var [y'(t)l = lim Var [y(t)l = -. 
t-tco t+m 

For a simple example, let m= 0 and y'(0) + constant; then 
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no matter what a is. 

7. The case of non-random u. In  case a ( t , x ) r a ( t ) ,  SO that a is a 
function of t alone, a more detailed analysis of the sample paths of a second 
order It6 process can be given. An example of such a process is the solu- 
tion process for the equation of the Brownian oscillator. In  this case a s 1  

and m[t, E, 4 = - 2cr;q - pzt,  where a, p are constants satisfying 0 .< a < 19. 
For more information on this example see Edwards and Moyal [6] and, for 
a generalization of [6], see Goldstein C1.11. 

PROPOSITION 7. 1. Let { y ( t ) ,  t E R+} be a second order Itd process with 
drgt and dtjiusion coefficients m, a such that (B1) - (B3) hold. Suppose that a is 
a positive function of time alone, so that a( t ,  x) = a(t) > 0 independent of x E Rz, 
and assume that 

(a) 
the time scale. 

(b) 

a2(u)du = -. Si 
I f  m= 0 then {y ’ ( t ) ,  t E R+} is a Brownian motion process after a change of 

Suppose there is a positive constant r such that 

m[t, XI 2 7 [or m[t, X I S  - TI 

for all su8iciently large t and all x E R2. If also there is a 6, > 0 such that 

2 log log 1’ az(u)du < (7 - 6,)ztz 

f o r  all sufficiently large t ,  then 

lim y’(t) = - [limy’(t) = - -1, 
t - im t-tm 

l im y ( t )  = VJ [lim y ( t )  = --1 
t-tm t+m 

with probability 1. 

Proof. Let a: R+--+(O,-) be a Baire function which is bounded on 
Let X ( s , t )  be the a-field generated by the incre- compact subsets of R+. 

ments {x(v) - x(u), s 5 u L V  G t } .  Let 

Then, for t z s 2 0 ,  
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is x ( s , t )  measurable. I t  follows that the x-process has independent incre- 
ments. Moreover, by standard properties of stochastic integrals, { x ( t ) ,  t €R+}  
is a martingale with continuous paths. Hence, by a well-known result [4, 
p. 4201, the x-process becomes a Brownian motion process after a scale 
change. More precisely, let 

E ( t )  = Var [x( t ) l= E{[x(t)12}. 

Then E ( t )  = S:8(u)du, and t is continuous and strictly increasing. If v=E-’ 
is the inverse function, then { b ( t )  = x( .q( t ) ) ,  t E R+} is a Brownian motion 
process with unit variance parameter. 

I t  is easy to translate the sample function properties of a Brownian mo- 
tion process to those of the x-process. o2(u)du==, 

then it follows from the Law of the Iterated Logarithm [15, p. 2421 that 

This proves part (a). 

For example, in case s, 
- 
lim x ( t )  = VJ, & x ( t )  = - VJ 

t+m t-tm 

with probability 1. 
with mean zero and variance [ t ( t )  - E(s) I = I s t  02(u)du 1 .  
has all of R1 as its state space; so does x ( t )  since x(0) = 0. 

Also x ( t )  - x(s )  = b ( t ( t ) )  - b(E(s)) is normally distributed 
Hence z ( t )  - x ( s )  

Let the hypotheses of part (b) hold. Then 

Y‘(t) = Y‘(0) + xo(t) + x ( t )  (7. 1) 

where xo( t )  = Stm[s,y(s), y’(s)]ds and the x-process is as above. The x- 
process is a Brownian motion after a scale change, so that its same function 
behavior is well-known. By the hypothesis on m, given 6>0, there is a 
To = To(& O )  > o such that 

x , ( t )  2 ( r  - 6) t  

for all t TT, with probability 1. 

[or xo( t )  G ( r  - 6)tl 

The hypothesis 

(2 log log E ( t ) ) ” 2  5 ( r  - 6,)t 

together with the Law of the Iterated Logarithm and the decomposition 
(7. 1) imply 

lim ~ ‘ ( t )  = - [or lim ~ ’ ( t )  = - -1 
t+m t+m 

with probability 1. Integration yields 
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lim y ( t )  = ~3 [or lim y ( t )  = - -1 
f 3 m  f-ta 

with probability 1. 

displacement (y-) processes both tend to & 03 as t --+ m, the 
the same as the sign of m for large t .  

have no proof of this conjecture. 

8. 
I n  this section the stationary second order It6 processes described by 

Hence, "consistent drift" implies that the velocity (y' -) and the 
sign being 

I t  seems likely that part (b) is true even if G is non-random, but we 

The stationary case: Associated semi-groups and martingales. 

Zl(t) = d o )  + s: y'(s)ds 

y ' ( 0  = Y'(0) f 1: mCy(s), y'(s)lds + s; OL-Y(S), y'(s)ldx(s) 
(8. 1) 

will be considered. Here "stationarity" 
means that the Markov process {Y( t )  = ($ti)) , t E R+} has a stationary 
transition function, and this is the case whenever m[t, E, 71 and a[t ,  E, 71 are 
both independent of t. 

Let $g be the space of all real-valued continuous functions on R2 that 
vanish at infinity. (We could equally well treat the complex-valued case.) 
9 is a Banach space under the supremum norm. For f E $g and x E R2 
define 

(B1) - (B3) are assumed to hold. 

( Z f )  ($1 = E{fCY(t)ll Y(0) = $1 ; 
stated differently, 

( Z f )  (x) = 1,. f ( v ) P ( t ,  x, d3)  

where P ( t , x ,  G) = P{Y( t )  E GIY(0) = x} is the transition function of the Y- 
process. {z, t E R+} is a strongly continuous contraction semi-group of 
linear operators on $j? (see Dynkin [S, p. 3491). (In other words, the Y- 
process is a Feller process.) 

Let & denote the infinitesimal generator of {S, t €I?+}; f~ D ( s ) ,  
the domain of M ,  and 

Mf = lim h- ' (Thf  - f) 
h-10 
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whenever this limit exists in the norm topology of g. 
Let @: be the collection of all twice continuously differentiable func- 

tions which have compact support in R2. Then 9; c D ( g ) ,  and for 
f E %?! and (E,s) E R2, 

(Mf) E,?) = 2-’a2(E, 9)  (a2f/aV2) + m(E, p )  @ f l a p )  + p ( a f / a E ) .  (8. 2) 

For proofs see [5,  p. 3521. 

(B4) 
Let (B1) - (B4) hold. 
tions f on R2 such that 

We shall also consider the condition 
m, (Z are uniformly bounded functions on R2. 

Let C be the set of all continuous real-valued func- 

For t E R+, x E R2, and f E C define 

(Ttf) (x) = E{f[Y(t)llY(O) = 21 = lB2 f (Y)P(tY x, dY). 

Then, as Borchers showed in 1121, C is a Banach space under the norm 1 1 .  11, 
and {T,, t E R+} is a (not necessarily strongly continuous) contraction semi- 
group of linear operators on C. Define the infinitesimal operator A by 

A f = lim h-*(Ttf - f), 
h-10 

the limit being in the norm topology of C. 
set of all f E C for which the above limit exists. 

conditions hold : 

The domain D ( A )  of A is the 

If f E C, then we shall write f E C(2) if and only if the following three 

(i) 

(ii) 

f has continuous second partials everywhere in R2. 

There is a constant c E [O, 1) (depending on f) such that 

sup il(D”f) ( 5 , ~ ) l e - c ~ ~ ~ :  (6,~) E R2}  <-, 
where o“f stands for any derivative of f of order two or less. 

(6;) There is a compact set S c R2 (depending on f) such that f 
has continuous third partials in R2\S and 

sup { I (oaf) ( 5 , ~ )  I e-clnJ : (E, 7) E R2\SI < ~3 

for each third order derivative D“f  o f f ;  here c is the constant of condi- 
tion (ii). 
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Borchers [2J proved that C(2) c D(A) and 

(Af) ( f y  7 )  = 2-’02(E, 7 )  (a2f/av2) + m(E, 7 )  (a f lav )  + v(af/aE) 
for f E Ccz), (6,~) E R2. 

(B4) is replaced by 

(B4’) 
then, using ideas similar to those in [2], it can be shown that for f E Cc2), 

t E R+, ( E , ? )  E R2, 

In fact, in the general case in which m, G are time dependent and 

my 6 are uniformly bounded on R+ x R2, 

Iim h-’(T(t, t + h) f  - f) ( f ,  7) 
h+O 

= 2-’02(t, E, 7) (a2f/av2) + m(t ,  E, 17) (a f lav)  + v(aflaE) 

where for t E [O, S I ,  

THEOREM 8. 1. 
which (B1) - (B3) hold. 

Consider a second order It6 process described by (8. 1) for  
Let g E D ( S )  satisfr either 

(111 M 9 = 2  

(II)1 LW-9 = 19 

(1’)’ {sCY(t) l -  At, t E R+} 

or 

for some real 2. Then the corresponding stochastic process 

or 
(IT)’ {e-W.Y(t) l ,  t E R+} 

is a martingale. If “ = ” is replaced by “r” in either (1)’ or (II)’, then the 
corresponding stochastic process is a submartingale if its random variables have Jinite 
expectations (Le. belong to L1(sZ, s, P)).  

THEOREM 8. 2. Consider a second order It8 process described by (8. 1) for 
Let g E D(A)  satisfy which (B1) - (B4) hold, and suppose that E{elg’(o)l} < m. 

either 
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( I ) z  A g = R  

(1% A g  = Ag 

(1')z M Y ( t ) l -  I t ,  t E R+} 

or 

for some real R. Then the corresponding stochastic process 

or 
(11')2 [e-itg[Y(t)l ,  t E R+} 

is a martingale. If (( = " is replaced by (' 2 " in either (I)z or (11)2, then the 
corresponding stochastic process is  a submartingale ;f its random variables have Jinite 
expectations. 

Theorem 8. 2 is a reformulation of a result of Doob [3, pp. 190-1911 
adapted to the case of a second order Ita process with a stationary transi- 
tion function. Doob's proof is valid without essential change for the present 
case, using some estimates of [z]. The proof of Theorem 8. 2 is presented 
below for completeness. Replacing A, T ,  in the proof by &?, yields 
a proof of Theorem 8. 1. 

Proof. Let b > 0, t E [O,bl, and g E D(A).  Then 

(T,-,g) [Y ( t ) l  = EIg[Y(b ) l lY ( t ) }  by stationarity 

= EIg[Y(b)llY(s),  s s  t }  

by the Markov property. Thus (T,-,g) [ Y ( t ) ] ,  for 0 5  t I; b, is the conditional 
expectation of g[Y(b)] with respect to an increasing family of 0-fields, and 
hence [ (Tb-tg) [Y ( t ) ] ,  t E [O, b]}  is a martingale if its random variables have 
finite expectations. If (II)z holds, so that A g  = Rg, then T,g = eafg since 
each of Ttg and eltg is the unique solution of (d ld t )  f ( t )  = ;cf(t), f(0) = g. 
The reasoning is similar in case (I)z holds. Consequently, if (II)z holds, 

(T,-,g) [Y(t)l = edbe-ntg[Y(t)l. 

It follows that [e-"g[Y(t)], t E [O, b]} is a martingale as soon as it is shown 
that E [  Ig[Y(t)]l} < u3 for each t E R+. (This is trivial in the case of Theo- 
rem 8. 1 since g is bounded.) Letting b+m, the desired result is then 
obtained. 
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E{ IgCy(t)ll}I llgllE{e~ff’(t)~l. 

Thus it suffices to show that E{ely(t)l} is finite. 
Borchers [Z, p. 961, 

According to a lemma of 

E{elff(f)I} K,elff’(o)l (8. 3) 

if y’(0) is a constant random variable, where Kt = 2 exp{ t K ( t )  (1 + K(t)) /2}  
and K ( t )  is the constant appearing in hypothesis (Bz). In  case ~ ’ ( 0 )  is not 
a constant random variable, let F be its distribution function. Let yL(t) 
correspond to the constant initial value yL(0, o) 3 a. Then, for every Bore1 
set G of real numbers, 

and so 

Sr 4 KtelaldF(a) by (8. 3) 

&E{elff’(O)I} < v3 

by hypothesis. 
So we wish to solve one of the equations A g =  R or A g =  l g  (or a 

similar equation with A replaced by d) and thereby obtain information 
about { Y ( t ) ,  t E R+} from the fact that a stochastic process closely related 
to {g[Y(t)], t E R+} is a martingale. If, for instance, g[Y(t)] converges with 
probability 1 as t -+my then what can be said about the asymptotic 
sample function behavior of the y- and y‘-processes? I t  seems that any 
such analysis depends on knowing the solution function g explicitly. 

The next result is a non-existence theorem which shows that Theorem 
8. 1 is useless. That is, every solution g in W of Mg = ,? or of d g  = Rg 
is identically zero (if ~ ( x )  > 0 for each x E Rz) .  On the other hand, we 
shall later derive some useful consequences of Theorem 8. 2 (see especially 
Theorem 8. 5). 

This completes the proof. 
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where CJ and m are continuous and CJ is positive. 
Note that any solution of d g  = ,? or of 9 g  = Ag, where d is given 

by (8. Z), is a classical solution of (8. 4) since e is equipped with the sup- 
remum norm. 

Then g= 0. 

Proof. If g E 9 satisfies (8. 4) with right hand side A, then since 
g ( x ) + O  as 1x1 -+-, we must have A = 0. Thus it suffices to consider 
(8. 4) with right hand side Ag. Let 6 > 0 be given. 
Since g vanishes at -, there is a K = K(6)>0 such that Ig(6,V)l 5 6  if 
C2 + 92 z K. By the extended form of the Maximum Principle [lo, p. 381, 
we obtain 

Let Y = max (A,O). 

IQ(E,V)I S e ” C 6  

for E2 + $< K and hence for all ( c , ~ )  E Rz. Since 6 > 0 is arbitrary we 
must have g r O .  

Theorem 8. 2 is thus better suited to the problem of determining 
asymptotic behavior of the Y-process trajectories than is Theorem 8. 1, since 
it permits in some cases an explicit computation of a solution of Ag = 0 
which can “grow at infinity” (we have taken A = 0 for convenience). That 
is to say, in the present case, it is necessary to work with the non-strongly 
continuous semi-group IT,, t E R+} rather than with {A, t E R+} in order 
to get non-trivial results. 

The next result deals with the special case m = 0. 

PROPOSITION 8. 4. Let (Bl)-(B3) hold for a second order Itd process described 
be the by (8. I), and let m=O. 

oTfield generated by { ~ ( s ) ,  s E [O, t ]} .  
Then {y’( t ) ,  t E R+} is a martingale. Let 

If also (B4) holds, then 

E { Y ( t  + s)ILyz-c-l = Y ( t )  + SY‘(t) 

for all t ,  s E ??+. Suppose that lim E{ I y’(t) 1 ] (which exists in [O, -1) is jnite.  
t+m 

Then, as t --+ m, y‘(t)  converges with probability 1, say to ~ ’ ( m ) ,  and 

I im(Y(t  + S) - Y ( s ) )  = SY’(-) (8. 5) 
f+m 

with probability 1. 

Proof. Since m=O, 
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and so {y'(t) - y'(O), t E R+} is a martingale; therefore so is {y'(t), t E RC} 
a martingale. 

If & is as in the proposition, then S is also generated by {~'(s), 

s E [0, t ] }  ; and { ~ ' ( t ) ,  s, t E Ri}  is a martingale. 
Then if c is bounded, 

Let s, t E R'. 

(the justification for this interchange is given below) 

n 
= y ( t )  + lim I= sn-'y'(t) = y ( t )  + sy ' ( t ) .  (8. 8)  

To see 

n+m r = l  

(8. 8) follows from (8. 7) since { ~ ' ( t ) ,  &, t E R+} is a martingale. 
why (8. 7) follows from (8. 6) let 

n 

i=l  
x = Y ( t  + s) - y(t), x, = x sn-ly'(t,) 

where ti = t + is%-'. I t  must be shown that the random variable 
lim E { X , [ S }  (which exists and equals sy ' ( t ) )  equals E { X l S } .  Since 
n - m  

E~IEIX,I.9-t} - E { X l S } l }  = E{IE{X,-XXIKJI1 
S E { I X , - X I }  IE""IX,-Xl2}, 

Now, it suffices to show that lim E{ IX, - XIz} = 0. 
n-?m 
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by the Schwarz inequality and the fact that ti - t+l = sn-’. Consequently 

Since m s o ,  for v z  u, using (8. I), 

E I I Y ’ ( ~ )  - Y ’ ( ~ ) I ~ I  = Var { ~ ‘ ( v )  - y ‘ ( u ) ~  = I w ~ { c 2 ( y ( r ) ,  y ’ ( r ) ) ~ d r  

(see also (6. 3)). Hence, if K is a bound for 2, 

E{  I Y‘(v) - Y’(u) I ‘1 < K(v  - a). 

Combining this inequality with (8. 9) we obtain 

as n+-. Thus (8. 7) follows from (8. 6) when (B4) holds. 
If E{ ( y ’ ( t ) l } ,  which is a monotone function of t ,  is bounded, then 

lim y‘( t )  exists with probability 1 by the Martingale Convergence Theorem 
[4, p. 3191. Then for any fixed 
S:E Rf, 

t+m 

Let y’(-) be the limit random variable. 

Y ( t  + s) - Y ( t )  = sy‘(r) + sy’(-) 

as t --+ M (by the Mean Value Theorem) with probability 1. The y -  
process increments thus become ”asymptotically stationary”. 

We remark that (8. 5) is valid even if E{ Iy’(t)l} +- as long as 
lim y’(t)  = y’(-) with probability 1. 

not be a martingale. 
In  this case {y‘( t ) ,  t E [O, -I} need 

t-im 

THEOREM 8. 5. Consider a second order Itd process described by (8. 1) for 
Suppose that p ( q )  = m(E,p)/e2(E,q) depends which (Bl)-(B4) hold with e positive. 

only on 7. Assume that m, e are such that 

( i )  p is  bounded 

(ii) there exists qo> 0 such that p‘ exists and is bounded and continuous in 
{v: I r l 2 q o } .  

Let g(E,q) = g(q) = l: exp( - 2 ~ c p ( s ) d s ] d t . r  Then g E C(z) and A g  = 0. {gCy‘(t)l, 
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t E R+} is a martingale. Suppose that g [ y r ( t ) ]  converges with probability 1 as 
t +m. Then y ' ( t )  converges with probability 1, say to ~'(m), as t -+-, and 

lim ( y ( t  + S )  - y ( t ) )  = S Y ' ( ~ )  
t 4 m  

with probability 1 for each s E R+. (y'(m) may take on the values with 
positive probability.) 

Proof. Let the hypotheses hold. A function h will satisfy Ah = 0 if 
and only if 

(a2h/ag2) + 2 p ( g )  (ahlag) + (27/a2(6 7 ) )  (ahlac) = 0. 

In  case h ( 5 , ~ )  = h(g) is independent of e, this equation becomes 

h" + 2ph' = 0 

where primes denote differentiation with respect to g. 

tion of this ordinary differential equation is given by 
The general solu- 

setting C, = 0, C, = 1, it will follow that A g  = 0 where 

as soon as it is shown that g E C(,). 

real 7 .  
To that end, let K/4 be a bound for p ,  so that l p (g ) I  5 K/4 for all 

Let x = Kg and h(x) = g ( x / K ) .  Then 

+ 2p(q)g'(g) = 0 

for all real g implies 

h"(2) + 2r(x)K-lh'(x) = 0 

for all real x ,  where ~ ( x )  = p(x/K) .  lr(x)K-ll <1/4 for all real x ;  hence 
without loss of generality we can (and we shall) assume that K =  1. Then 
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h ( t )  = g[y‘(t)] = 1;‘) exp( -2S:p(s)ds]dr. 

I t  follows by Theorem 8. 2 that the stochastic process {h(t) ,  t E R+} is a 
martingale. Suppose that as t -+my h( t )  converges with probability 1. 
Then, with probability 1, y’(t)  converges as t ----+my since g is a strictly 
increasing function. Let ~ ’ ( m )  = limY’(t); ~ ‘ ( m )  may take on the values 

For any s E R+, as in the preceding pro- 
position, 

t+m 

~3 with positive probability. 

with probability 1, so that the y-process increments become “asymptotically 
stationary”. (In this connection see the example given in [ll, p. 851, [6, 
p. 6771. ) 

Note that by the Martingale Convergence Theorem, h( t )  = g[y‘(t)] will 
indeed converge with probability 1 if E{ Ig[y’(t)]l} is bounded. The follow- 
ing result gives a sufficient condition for this to happen. 

LEMMA 8. 6. Let p be as in Theorem 8. 5. Suppose there exist positive 
Then 

lim h( t )  exists; 
constants r, C such that p ( s )  2 r for s 2 C and p ( s )  s - r f o r  s < - C. 
the random variables h ( t )  = g[y‘(t)], t E R+, are un$orml_y bounded. 
with probabilit_y 1; let h(-) denote this limit. 

t-tm 
Then for every r21 ,  

l i m E {  Ih(t) - h(m)I‘} = 0. 
t+m 

A simple example of a function p satisfying the hypotheses of this 
lemma is given by p(s)  = tan-Is. 

Proof. Let the hypotheses of the lemma hold. 
there is a constant N such that Ip(s)l < N  whenever SE[-C,C].  

Since p is continuous, 
If s ~ C ,  
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0 z g(s)  2 - CeZNC - ( 2Y)-le2Ys. 

Consequently, for all real s, 

Ig(s)[ 5 C e Z N C +  (27‘)%-2rlsl s C e z N C +  (2i9-l. 

Therefore, the random variables h( t )  = g[y ’ ( t ) ] ,  t E R+, which form a mar- 
tingale, are uniformly bounded and hence uniformly integrable. Therefore 
by [4, p. 3191, for every rZ1, 

lim E{ I h ( t )  - h(-)I ‘1 = 0 
t-tm 

where h(-)  is the a.e. limit of h( t )  which necessarily exists. Moreover, 
{ h ( t ) ,  t E [O, -I} is a martingale and 

h( t )  = sCy’(t)l = EIh(-)Ih(s), s E eo, tl} 

for each t E R+. 
In  Doob’s paper [3] the method of stopping times is used in developing 

a boundary theory for one-dimensional diffusion processes. For higher di- 
mensional diffusions with stationary transition functions, it is known that if a 
vector process satisfying a certain stochastic equation is “stopped”, it be- 
comes the stochastic process described by a new stochastic equation (see 
15, p. 354 ff.]). If [ Y ( t )  = ($(“t’)) , t € R + }  is the vector form of a second 
order It8 process, and if a stopping time applied to this process yields a 

new process { X ( t )  = (;ii{), t E R+], the X-process will be the solution pro- 
cess for a stochastic equation, but the x2-process will not in general be the 
derivative of the XI-process. This is one of the reasons why the boundary 
theory analysis applied in [3] does not extend automatically to the case of 
a second order It8 process. 
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Added in proof. The conjecture made at the end of section 7 is correct. 
The proof depends on the following result. Let {a(t) ,  t E R+} satisfy (GI)- 
(G3) of section 4, and let z ( t )  = [’ a(s)dz(s). Define the intrinsic time T for 

x by r ( t ,o)  = [taP(s ,w)ds.  Then { y ( t , o )  = z(r-l(t,o),o): O s t  <r(m,o)} is a 
Brownian motion. This theorem is proved in H.P. Mckean, Jr., Stochastic 
Integrals, Academic Press, New York, 1969, pp. 29-31. 


